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ABSTRACT

A method for determining optimal impulsive trajectories is

applied to minimum fuel, direct ascent, time-fixed intercept trajectories.

The optimal trajectory is obtained by satisfying Lawden's necessary

conditions expressed in terms of the primer vector. The vehicle is

initially at rest on the surface of a spherical planet and the target is

assumed to be in a circular, equatorial orbit around the planet. Results

are presented and compared for two planetary models: a non-rotating

planet, and one rotating with an angular velocity approximating that

of the Earth. Each model is investigated for transfers in which the

launch point is in the same plane as the target orbit (coplanar) and

in which the launch point is not in the target orbit plane (noncoplanar).

§ Parameters varied during the analysis include transfer time, target

radius, initial position of the target in relation to the launch point,

the latitude of the launch point, and the direction of the transfer

trajectory, i.e. posigrade or retrograde. Cost comparisons are made

between the various cases, and generalizations indicated.
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LIST OF SYUBOLS

a semi major axis length
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e eccentricity vector

E eccentric anomaly
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G(r) gravity gradient matrix
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I identity matrix
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m spacecraft mass

N contact force/unit mass of planet surface on launch vehicle

n nodal vector

P primer vector

P primer vector magnitude

period of an orbit

r position vector

R radius of target to be intercepted
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s semi perimeter of space triangle

S planet surface constraint

t time

tf specified transfer time of flight

tm minimum energy flight time

U unit thrust vector

V velocity vector

AV change in velocity due to thrust

V rot velocity of planet/moon due to rotation

X instantaneous state vector

a,3 auxiliary angles in Lambert's problem

initial lead angle of target

F k trajectory k

1' thrust acceleration magnitude

6 first variation of variable

E: small quantity

X Lagrange multiplier function vector

gravitational constant

lattitude of launch point

state transition matrix

e transfer angle or final true anomaly

A Lagrange multiplier function vector for planet

surface constraint

primer vector for planet surface constraint
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m an intermediate state

a minimum energy value in the Lambert Problem
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p periapse

H Hohmann condition

other

first derivative
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CHAPTER 1

INTRODUCT ION

The increased use of the Space Transportation System (STS) or

space shuttle, has increased attention on the area of optimal space

trajectories. Of special concern are minimum fuel trajectories. If

less propellant (fuel plus oxidizer) can be carried, then more payload

weight can be thrust into orbit, fuel can be saved, a smaller spacecraft

can be used, or any combination of these.

The impulsive thrust approximation is valid if the thrust is

large enough that the thrust duration is negligible compared to the

transfer time. Thus the problem is to enter or intercept a desired

planetary orbit using impulsive thrusts which minimize propellant

(hereafter called minimum "fuel"). This problem is typically called

Lawden's Problem due to his extensive work in minimum fuel trajectories

in an inverse square gravitational field using a variable thrust engine

having constant exhaust velocity and unbounded thrust magnitude (30).

The impulsive solution for an entire trajectory is composed of coasting

(no engine burn) arcs separated by a finite number of impulses. Optimal

impulsive solutions can also be useful as starting conditions to

determine optimal finite thrust solutions.

Most research has concentrated on orbital transfer trajectories

using an unspecified transfer time, i.e. time-open. However, time-open

optimal solutions can require excessively long or even infinite transfer

times. Recent studies have explored orbital rendezvous for a specified
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transfer time, i.e. time-fixed (10, 18, 29, 37). The time-fixed case is

TI more interesting since most manned space systems have time constraints

due to life support systems. Time-fixed transfers would also be appro-

priate for space rescue missions.

- Scarce attention has been granted the area of minimum fuel orbital

interception. Rather than rendezvous with another orbiting body, i.e.

match position and velocity, interception requires that the space vehicle

match only position. One application would be a fly-by for visual

inspection. Another would involve a typical two-payload space shuttle

mission. Using a technique similar to a paperboy riding down a sidewalk

on his bicycle and throwing newspapers onto porches without entering

every driveway or walk, the shuttle would intercept a point in the first

desired orbit and launch the first payload without actually expending

fuel and entering the orbit. The shuttle would then intercept a point

in the second orbit, launch the payload, and return to Earth. If it

entered every orbit, the shuttle would require a minimum of five velocity

changes (launch, in and out of first orbit, in and out of second orbit).

By intercepting the desired orbit insertion point and allowing each

payload to use its own propulsion system to enter the desired orbit, the

sutecould saefuel. Less fuel would be expended by the shuttle,

which would require a minimum of two velocity changes (launch and return

to Earth). Each payload would require a velocity change, but less fuel

would be expended because the mass of each payload would be significantly

less than that of the shuttle. Thus the two shuttle velocity changes

plus the two payload velocity changes would be less than the five required

if the shuttle entered each orbit. This poses a potential significant

fuel savings and the possibility of increased payload.

% % %'
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This thesis analyzes the problem of multiple-impulse, minimum-

fuel, direct ascent, time-fixed orbital interception. Following are the

objectives of this study:

a) Design and construct a computer program to obtain time-fixed,

minimum fuel, impulsive, direct ascent intercept trajectories.

b) Apply the method to the time-fixed, direct ascent intercept

from a specified initial position on a planet or moon's surface to a

specified target.

c) Show the effects of different target orbit radii and initial

phase angles.

d) Show the effects of inclination of the target orbit with

respect to the launch point.

e) Show the effects of planet/moon rotation on the intercept.

To obtain minimum fuel optimum intercept trajectories, the

following assumptions were made:

a) The planet/moon is spherical and has negligible atmospheric

effects.

b) The spacecraft has a zero velocity relative to the planet

immediately before the first impulse is applied.

c) A planet-centered, inertial, Cartesian coordinate system is

used.

d) Launch is from an arbitrary point on the planet/moon surface.

e) The target is in a circular, equatorial orbit.

f) The intercept must be made in a finite, fixed time.

g) The engine burn times are very short compared to the transfer

time. This allows the impulsive thrust approximation to be made.
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h) The body from which the launch is made is the sole gravita-

tional source.

i) Only one target is to be intercepted, i.e. no multiple

interceptions are to be made.

Two planetary models are investigated: a nonrotating planet and

a planet having a rotation period which is approximately 17 times the

circular orbit period at the surface (comparable to Earth). The non-

rotating model approximates celestial bodies which have a very low

rotation rate and virtually no atmosphere, such as the Moon (for which

the rotation period is approximately 400 times the circular orbit period

at the surface). The model which includes planet rotation is intended

to be a first approximation to optimal Earth intercepts. It is included

to illustrate the effects of planet rotation.
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CHAPTER 2

NECESSARY CONDITIONS FOR AN OPTIMAL, IMPULSIVE TRAJECTORY

2.1. Introduction

General optimization theory provides conditions for which a cost

functional is minimized subject to a set of constraints. The optimization

problem presented herein is basically to minimize propellant (fuel)

expended in an inverse square gravitational field using the impulsive

thrust approximation for a fixed transfer time. Minimizing propellant

used is the same as maximizing the final spacecraft mass, i.e. the change

in mass is assumed to be entirely due to the consumed propellant. The

necessary constraints are the differential equations of motion of the

spacecraft, the terminal position of the target to be intercepted, and

the initial position and velocity of the spacecraft.

2.2. Cost Functional

A general form of the cost functional to be minimized in an

optimal control problem over a time interval to < t < tf is as follows:

t f

J = [X(tf),tf] + L(X,U,t)dt 2-1

t
0

where X (t) is the instantaneous state vector of the system and U (t) is

the control vector.

The impulsive thrust approximation requires the thrust durations

to be short compared to the time of flight. This is the case for high

thrust rocket engines where the thrust acceleration greatly exceeds

A A41 11 111 1 10
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the gravitational acceleration. Ignoring the gravitational acceleration,

the vector change in velocity due to the thrust impulse is

AV = c ln (mo /mf) U 2-2

where m and mf are the initial and final masses, c is the effective

exhaust velocity of the engine, and U is the unit thrust vector, i.e.

AV is in the direction of the thrust. For a single impulse, maximizing

mf is equivalent to minimizing JAVI. Thus, for N impulses, maximizing

mf corresponds to minimizing the sum of magnitudes of AV, i.e.

N
J = E lAvil 2-3

4'. i=l

where

1AVil = (AVi . AVi) /2 2-4

and J is termed the characteristic velocity.

Therefore, minimizing the fuel expended, maximizing the final mass,

m(tf), and minimizing the sum of the magnitudes of the velocity changes,

are equivalent optimization criteria for the impulsive thrust problem.

2.3. Equations of Motion

The equations of motion of a spacecraft, thrusting in a central

force field, can be written in terms of the orbital radius vector, r, as

r-V

V = (r) + ru 2-5

~=r
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where (r) is the gravitational acceleration vector, F is the thrust

acceleration magnitude (0 < F < F max), J is the characteristic velocity

to be minimized, and U is a unit vector in the direction of thrust. En

the impulsive case, J is the sum of the magnitudes of the instantaneous

velocity changes, as discussed in the previous section. Define a state

vector as

X V2-6

Rewrite the equations of motion (2-5) in first order form as

X=f (X, F, U, t) ) + r 2-7

where the control variables are r and U.

For a high thrust engine, one can make the impulsive thrust

approximation by assuming unbounded thrust magnitude (Fmax - ). Then

the engine is either off (rF 0) or provides an impulsive thrust of

'A infinitesimal time duration.

To determine a minimum fuel solution, one must solve the optimal

control problem over a fixed-time interval to < t < t f* This solution

must minimize the final value of J and satisfy the equations of motion

and the orbital boundary conditions of the intercept problem.

2.4. Necessary Conditions

The necessary conditions for the optimal trajectory are expressed

in terms of the Hamiltonian functlon (8, 30):

- - ~ S~ 5 5 3 5 s~ ;3- -
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H = (t) f (X, F, u, t) 2-8

where X (t) is a vector of Lagrange multiplier functions, also called

adjoint variables. Partitioning the adjoint vector into components

similar to the state vector we get

X= 2-9=L j
The Hamiltonian (2-8) now becomes

Tfi--r V (+T r) + F U1 + X F 2-10

Three of the necessary adjoint equations for the problem are given by

Lawden (30), Bryson and Ho (8), and Prussing and Chiu (40) as

.T T
X = -DH/Dr = -X G (r) 2-11

= T 21X = -aH/3V = _ 2-12V -- -r

j = -3H/3J 0 2-13

where G (r) is the symmetric gravity gradient matrix D (r)/"r. The

boundary conditions on X and X depend on the terminal state constraints,--r --v

r (tf) and V (tf), but, because the characteristic velocity is uncon-

strained, the constant value of its adjoint variable is

X (t) = 1 2-14

An additional necessary condition is the Pontryagin Minimum

Principle which states that the control variables must be chosen to

WN 'r W C 'V
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minimize the instantaneous value of the Hamiltonian (8). Thus, to

minimize H, we minimize the dot product X T U, i.e. align the thrust

vector in the opposite direction of the adjoint velocity vector. Lawden

termed this the primer vector,

P (t) = -Xv (t) 2-15

Noting that the optimal thrust direction is aligned with the primer

U = P/P 2-16

where P is the magnitude of the primer vector, and that the adjoint to

the position vector, Xr, equals the primer vector time derivative,

X =P 2-17-r -

1%

one notes that equations (2-11) and (2-12) can be combined to obtain

p = G (r) P 2-18

The Hamiltonian becomes

H = Pr V T (P-I) P 2-19

The primer vector satisfies the same differential equation (2-18)

as the first-order variation in the position vector 6r about a reference

no-thrust orbit. For an inverse square gravitational field, convenient

forms of the solution to this equation are given by Glandorf (15) and by

Gravier, Marchal, and Culp (17).

I
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From the Hamiltonian (2-19) one identifies the switching function

for the thrust magnitude as (P-1). En the continuous thrust case, the

Hamiltonian is minimized by choosing P = 0 when P<1 and r = r max when

P>l. For the impulsive case, r = 0 when P<1, with the impulses occurring

at those instants where P(t) is tangent to P = 1 from below (30). An

arc along which r = 0 is called a null-thrust (NT) arc. The only pos-

sibility for an intermediate-thrust (IT) arc for 0<r<P max is if P = 1

over a finite time interval. This is called a singular arc because r'

cannot be determined from the Hamiltonian (2-19).

The necessary conditions for an optimal impulsive trajectory,

first derived by Lawden, can be written entirely in terms of the primer

vector as follows:

1. The primer vector satisfies (2-18) and must be continuous

with continuous first derivative.

2. The primer magnitude P<1 during transfer with impulses-

occurring at those instants for which P = 1.

3. At an impulse time the primer vector is a unit vector in

the optimal thrust direction.

4. As a consequence of condition 2, P = P = 0 at all

interior impulses (not at an initial or final time).

2.5. Primer Vector Calculation

lei Using the primer vector, equations (2-11) and (2-12) can be

written as

MIC
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- I '2
2-20

S(t) G (r) 0 L _()j

The solution to equation (2-20) can be expressed as

7p (r 7 [P 0)]

I_ -j 0 (t, t0 ) 2-21

(t) (to

where 0 (t, t ) is the state transition matrix for the system (2-20).o0

A convenient form of this state transition matrix has been derived by

Glandorf (15). Gravier developed a vector form of the solution for

the primer vector and the time derivative of the primer vector (17).

This research uses Glandorf's formulation, which is valid for generally

oriented inertial Cartesian systems, and for circular, elliptic, para-

bolic, and hyperbolic transfers, but not for rectilinear flight.

By partitioning the transition matrix into four submatrices

M(t, to0) N(t, to0)

0(t, to0 ) -- 2-22

t S(t, to) T(t, t0)

the primer equations can more easily be written as

P (t) = M P (t) + N P t) 2-23

P (t) S.P (t ) + T P t) 2-24
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Forcing the primer at the initial impulse time to be a unit vector in

the thrust direction, one obtains

P (t) A V /A V 2-25

However, for an intercept, no velocity change is required at the final

time, yielding

P (tf) = 0 2-26

Applying (2-26) to (2-23) and (2-24) yields

P (to) = -Nf - 1 Mf P (to) 2-27

P (t) = (M- N Nf 1 Mf) P (t) 2-28

Thus, knowing the primer vector at the initial and final times allows

calculation of the primer time derivative at the initial time, and

calculation of P and P at any time.

2.6. Constants of Motion on an Optimal Trajectory

If the gravity field is time-invariant, the Hamiltonian (2-19) is

not an explicit function of time. This fact along with the other neces-

sary conditions of optimal control theory implies that H is constant

over an entire NT trajectory (8). Furthermore, H is continuous across

interior impulses as shown by applying Lawden's necessary conditions.

For an impulsive trajectory the Hamiltonian is

H = *T V T 2-29

since r = 0. Since P, P, and g are continuous across optimal impulses,

rhe change in H across the impulse is
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AH = _T A V 2-30

Because the velocity change A V is aligned with the primer

vector P, and _T p = 0, AH = 0 across an optimal interior impulse. This

continuity of H across interior impulses demonstrates that H is constant

along the entire multiple impulse optimal trajectory.

Another constant of motion applies to an NT arc between any two

impulses along a reference trajectory. Premultiply (2-18) by SrT and

note that G is symmetric to obtain

p T 6r T 0 2-31

*T

Add and subtract P 6 V to obtain

d/dt (PT V- T 6r) =0 2-32

Integrating yields

T T
P 6 V - P 6r constant 2-33

This is a useful equation in determining optimal trajectories.

Prussing (39) and Pines (33) have shown the existence of other

constants of motion. However, equation 2-33 and the Hamiltonian,

equation 2-29, were used extensively in analysis and development of

computer algorithms for numerical results.
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CHAPTER 3

THE MINIMIZATION PROCESS

3.1. Introduction

Based on the necessary conditions of Chapter 2, Lion and

Handelsman (31) developed a procedure for obtaining optimal time-fixed

solutions, which is used as a background for the optimal interception

problem of this thesis. This procedure has been used by many others,

including Jezewski and Rozendaal (26), Gross and Prussing (19), and

Prussing and Chiu (40). Briefly, the primer vector is first evaluated

* along the solution which satisfies the orbital boundary conditions,

enforcing the necessary conditions that the primer vector at an impulse

time is a unit vector in the thrust direction and that the primer vector

at the final time is zero (eqns 2-25 and 2-26).

The required velocity changes were obtained by solving Lambert's

Problem (Appendix B, 2, 3, 4, 13, 27) for the given orbital boundary

conditions (initial and final radii) and the specified transfer time.

The following theory discusses conditions for the one and two impulse

case. For more details see references 19, 26, 31, and 40.

3.2. Primer on Nonoptimal Trajectory

Lion and Handelsman (31) expanded the primer definition for any

two impulse segment of a nonoptimal trajectory. At each impulse on an

optimal trajectory, the primer is a unit vector aligned with the vector

change in velocity:
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P (t k) A . (t k) A V (t k) 3-1

If the velocity changes on any two impulse segment of a trajectory or the

segment between an impulse time and the final time are known, so is the

primer at each end of the segment. Using the partitioning of the transi-

tion matrix developed in 2-22, the time rate of change of the primer at

either end of the segment is also known, and thus the primer vector,

* P (t), and its derivative, P (t), are uniquely determined over the NT

* -'*arc, assuming the N submatrix is nonsingular, i.e. invertible.

In general, the solution of 2-21 for different arcs can be joined

together so that the primer is continuous over the entire trajectory,

.1.~ since P at an impulse time is a unit vector in the thrust direction.

The primer rate, P. will be generally discontinuous across each impulse.

In attempting to satisfy Lawden's necessary conditions, Lion and

Handelsman not only extended the primer vector application as demon-

strated above, but also showed how to improve the cost functional by

N using information available on the nonoptimal trajectory.

Based on numerical results, Lion and Handelsman' s work, and the

fact that for an intercept the final primer vector magnitude must be

zero, certain types of primer vector time histories are possible, as

4 shown in Figure 3-1. The existence of other types has not been dis-

proved. Only the time history shown in Figure 3-1(a) satisfies Lawden's

optimality conditions. Figure 3-1(b) indicates that an additional

intermediate impulse will improve the cost, while Figure 3-1(c) indicates

that an initial coast will improve cost.

.4o
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IP-I

to tfttransfer time

(a) Optimal Trajectory

.11.

IIP!

to transfer time tf t

(b) Intermediate Impulse Indicated

55%

.1.0

to transfer time tf t

(c) Initial Cost Indicated

Figure 3-1. Typical Interception Primer Time Histories.
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3.3. Additional Impulse

Assume there is a reference trajectory F1 that connects the

initial position r (t ) on the body of the planet, C09 to a final00
9

position r (tf) on the target orbit, Cf. P1 may be a one impulse inter-

cept trajectory or a multi-impulse trajectory. Let r2 be a neighboring

trajectory. If r1 and r2 are sufficiently close, and F1 does not contain

any singularities, a linear variational analysis approach may be used,

with higher order terms omitted. Thus the costs on r1 and P2 from

Figure 3-2 are

V = jV + ~

on I  Jl -o - Vlo

and 3-2

on V +  - + V
onP 2: J2 2o-2o - + Y2 2m- V2m

where the superscripts (+) and (-) refer to the instants immediately

before and after the impulses. The subscripts (1) and (2) represent

P1 and r while (o) and (m) denote the initial and midcourse impulse.

For an intercept, there is no final velocity change. From the vectors

at the initial time, note

V+ + V+ 33
-2o -- io +  -o

Lion and Handelsman (31), Chiu (10), and Prussing and Chiu (40)

have shown these results lead to the first order change in cost obtained

by adding an impulse as

TJ -J 2 - J AV (- P U) 3-4
-m -
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I-0,
r 2 -000

v AV 2m

-2m

10-0

67 +
0, 0

-lo

Figure 3-2. Additional Impulse Intercept Trajectories.
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This change in cost can be made negative if the primer magnitude exceeds

unity at any time along the two-impulse trajectory. This agrees with

Lawden's condition that P < 1 on an optimal trajectory. The greatest

decrease in cost occurs when tm is such that the primer magnitude is a

maximum and the impulse direction U is chosen to be aligned with P .-in --m

Lion and Handelsman show that the differential cost between

neighboring trajectories is

6j= (PT - ) d r + (H+ - H) dt 3-5
-m -m -m m

3.4. Initial Coast

Figure 3-3 shows two neighboring trajectories: r is a non-

optimal trajectory with an impulse applied at t and r (t ); 2 is ao 0'2

nonoptimal trajectory remaining on the surface of the planet or moon,

with an initial coast until time t1 = to + dt and the impulse applied

at r (tI). Both trajectories intercept r (tf) on orbit Cf.

Since there are differences in position, velocity, and time at

the initial impulse (if the planet is rotating), a noncontemporaneous

variation is used, i.e.

d r (t) = r 2 (t) - r (t) 3-6

where r2 (tl) is the position vector on r2 at time tl, and rl (t)

the position vector on r I at time t. Using dt - tI - t and 6r (t) 1 _-
r2 (t) - (t), 3-6 becomes to first order,

d r (t) = 6r (t) + rl (t) dt 3-7

The costs on rI and T2 are

" " " ' ,4 , "z . ,..". .- - 1 I'2 are. " " "." " € " " ""w
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on I: J1 -1 -+

and 3-8

on r 2: J 2 ' --20 - V 2o

For a nonrotating planet, V - v - 0, but they are nonzero for a
1o -2o

rotating planet. Thus the costs become

I., -vo -I = I Av 1 I

and 3-9

I,= - =
+  -

17 J2 I-20 - V20 I= v2

But

V t) -V+ V+
-- (t - (t) + dV + (t) 3-10-2o0 1 1 0 -0 o

The difference in cost is

dJ = J - Jl v + 3-11

2 20 -2o -lo -loI-

Using the fact that

+ + V+
V2o - o + d -o

and V2o =Vlo + d V 3-12

One can rewrite equation 3-11 as

S- V o) + (d V + d V V +  -dJ = I(V 1o-v ) _ -o0 -d-o -i - V1 o 3-13
0 -10

-1 1 _1
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or dJ AV1 o + AdV - AV lo 3-14

Expanding the first term yields

lAVlo + AdV = [(AV10 + AdV)T (AVlo FAdV )I
1 /2

=[(AV )T AV + 2(AV ~oT AdV-1o .-lo -1o --0

+ AdV T AdV 11/2 3-15--0 -o

Ignoring higher order terms, e.g. AdV T AdV , 3-15 becomes

jAVlo + AdV j AVlo [1 + 2 (AVlo)T AdV0/AVlo 2]/2 3-16

where AV 1 = lAV 10 1 (AV1o)T AVo1 0
/

Use the binomial series expansion

(1 + ) 1 /2 = 1 + 1/2 e + higher order terms 3-17

and drop the higher order terms to obtain

[AVjo + AdV 0 AVlo [l + (AV o) T AdVo/AV lo2 3-18

Substituting 3-18 into 3-14 yields

dJ = AVlo [i + AVloT AdV 0/AVlo2 ] 
- AVlo

or dJ = AVlo AdV o/AVlo 3-19

Using the primer definition the difference in cost, to first order,

between two neighboring intercepts, one with an initial coast, may be

written as

TdJ-PoAd V 3-20
--o
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or dJ =P T (d V + - d V 3-21

0 -0 -0o

where d V = 6V + +V +  dt 3-22--O --o --O O

and, because 6 V = 0

d V =V dt 3-23
--o -O O

From Section 2.6, it was found that

PT 6 V - PT r = constant 3-33

Applying this at the initial and final times yields

Tp*TT *T pf r

P 6V - P T 6r =P 6v -P 6r 3-24--o --O --O -o-f -f -

But for an intercept, Pf = 0 and 6rf = 0, simplifying 3-24 to

p T 6V P 6r 3-25
--O -- -- O -- O

In the case of launching from the surface of a planet, V is
0

not continuous due to the contact force per unit mass, N of the

planet on the vehicle before the first impulse. Rewrite equation 3-21

using equations 3-22 and 3-23.

T .+dJ =PT0 [6V + ( oV - )dtj 3-26

Because gravitational acceleration is a function of position only and is

therefore continuous, this becomes

dJ = PTo [6V + - N dt ] 3-27

Using equation 3-25 the cost difference becomes
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dJ = jT 6r _ p T N dt 3-28
- O -o -0 - 0

Using the fact that on the transfer orbit

6r = dr -V + dt-o--o oa

and dr = V dt-o -o o

one obtains

6r = -(V -V o) dt°

= -AV dt0

Substituting into 3-28 yields

' "1" T pTdJ = -[AV P + 0N dt 3-29
" d 0--0 -- 0

The first term is the usual term which indicates an initial coast on an

initial orbit if P T p > 0. The second term is due to the fact that the
-0 -0

vehicle is initially not in orbit, but at rest on the surface of a planet.

Thus the cost can be decreased by an initial coast if the term in the

bracket in equation 3-29 is positive.

3.5. Condition for Optimal Initial Coast

To evaluate various trajectories for optimality, the cost

functional must be represented using known quantities. It can then be

determined how to minimize the cost to obtain local optimality condi-

tions. From Chapter 2, the Hamiltonian (2-29) can be written for an

inverse square gravitational field as

H =T V + /r3 pT r 3-30
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Write the cost functional as

J = 4 [X (tf), tf] + f {L(X,U,t) + XT [f(X,U,t)-Xl}dt 3-31

to

Bryson and Ho (8) show that

t f

di = f H/3U 6U dt + [X dX - H dt) t=t3-32

t
0

One necessary condition is that DH/aU = 0, yielding

dJ = dr + dV - H dt 3-33-ro -o -vo -o 0 o

In primer vector notation this becomes

dJ = PT dr P T dV - H dt 3-34
- -0 -0 -0 0 0

where H = constant = H can be obtained from 3-30. Thus the difference
0

in cost can be obtained using the initial primer, primer derivative,

radius, and velocity.

Noting that for a rotating planet with a V rot = wxr rotational

velocity vector, one obtains

dr10 = Vrot dt o  3-35and-d -ro t /o 2

and dV = rot / r dt 3-36--0 rot --o 0

Rewrite 3-32 using 3-35 and 3-36 to obtain

dJ = [Po T V + V 2/ro2 p T r - Ho Idt 3-37
-0 -rot rot o -0 -0 o o

For arbitrary dt, dJ is minimized when the bracketed term in 3-37 is

zero, i.e.
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T V + V 2/r 2pT r- H=Q0 3-38
--o - rot rot 0 -0 -O 0

This is an alternate form of equation 3-29 and is more con-

venient for numerical analysis and to allow evaluation of local

optimization. Note that for a non-rotating planet, Ho = 0 is the con-

dition for minimizing cost. For a rotating planet, 3-38 must be met.

3.6. Numerical Scheme and Constraints

Besides the two planetary models of the nonrotating planet and

one rotating with the Earth's angular velocity, the relative position of

launch point and target was also investigated. Thus a coplanar condition

is one in which the target orbit and the launch point are in the same

plane. An inclined condition is one for which the launch point is not

in the target orbit plane. The inclined case investigated in this study

was a launch latitude of 28 degrees, with the intercept in an equatorial

target plane. Four additional parameters were varied: the time of

flight (TF), posigrade versus retrograde orbit direction, lead angle

of the target (beta), and radius of the target orbit (R).

For each data set, the first reference set of calculations for

the given parameters was from the launch point at the initial time to

the final position. The desired output was the optimal trajectory

obtained (di = 0) when an initial coast was allowed. In all data cases,

only one impulse was required, with an initial coast used to optimize

cost.

Due to singularities and large slopes (dJ versus TF) near singu-

larities, and due to lack of a priori slope information, the first order

bisection iteration method proved most robust and useful. In

% 4 r V V *1Npa1
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approximately 15 iterations, this method would converge on the solution

to equation 3-38, i.e. where dJ = 0. This provided local optimal condi-

tions for the given parameters. By varying TF for constant beta, R,

and flight direction, the global optimum could be found. Some non-

unique solutions were encountered, in which case a direct comparison of

cost ',alues was used to determine the minimum.

Chapters 4, 5, 6, and 7 will concentrate on each of the four

major cases: coplanar launch point and target orbit with a non-

rotating body, noncoplanar non-rotating body, coplanar rotating Earth,

and noncoplanar rotating Earth. Appropriate comparisons and sample

trajectories will be included in each chapter.
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CHAPTER 4

OPTIMAL, COPLAN~AR, NON-ROTATING, TIME-FIXED INTERCEPTS

4.1. Introduction

An intercept between a launch point on a body's surface and a

point in space (i.e. target) can always be accomplished with a single

impulse. The problem is to find optimal, time-fixed, planet surface to

circular target orbit intercepts using primer vector techniques

developed in Chapters 2 and 3. Fixed transfer times allow exclusion of

excessive transfer times and would be useful in object identification,

enemy spacecraft interception, or realistic mission times due to life

support systems constraints.

The intercept geometry is shown in Figure 4-1. The launch point

is in the XZ plane, while the target orbit is in the XY plane. This is

a convenient, although totally general, choice of coordinates. From the

given geometry, optimal trajectories can be obtained by varying the

following parameters: the radius of the target's orbit, R; the latitude

of the launch point, 0 0; the target's initial angular position, beta;

thespcifedtransfer tmtf; and the direction of the trajectory in

relation to the target orbit, i.e. posigrade (in the same sense as the

target orbit) or retrograde (in the opposite sense from the target

orbit).

The units for length and time were chosen to make the gravitational

constant, i, have a unit magnitude. The reference position is the
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circular target orbit

0

x

Figure 4-1. Intercept Geometry
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planet' s surface, normalized to a radius of unity or one distance unit

(DU). Thus all orbits around a planet would have radii greater than

one. The reference time unit (TU) is defined for a circular orbit at

the planet's surface with a period of 2 TT TU. As a result, the ref-

erence velocity is the speed of a vehicle in this circular planet orbit,

i.e. 1 DU/TU. For the Earth, a DU is the Earth radius of 3963 miles

(6378 kilometers), while the TU is 13.4469 minutes.

* 4.2. Posigrade versus Retrograde

This study investigated the effect of the direction of the

trajectory. Figure 4-2 shows the typical case for 2700, R = 1.1,

with target and launch point in the same plane. If the primer history

indicated that an additional impulse was needed, the point is marked

with an A. Those points that violated the planet surface constraint

are marked with a C. All other points met the constraints and are

local optimums.

For times less than a certain reference value, to be discussed

later, retrograde orbits yield minimum AV, some having an initial coast,

some without an initial coast. For time greater than this reference

time, posigrade orbits with an initial coast yield optimum results.

This trend followed for target radii of 1.1, 2.0, 4.1721 (approximately

a 12 hour period Earth orbit), and 6.6228 (approximately a 24 hour

period Earth orbit). The target lead angles investigated were 0', 90',

1800, and 2700.

.. .Ip
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4.3. Coast versus No Coast

In most cases, an initial coast improved the cost, i.e. used

less fuel. Again, Figure 4-2 shows a typical case. For the non-

rotating body, if Tf > Tm (the transfer time on the minimum energy

ellipse--see Appendix B on Lambert's problem), the initial coast was

possible. Thus actual flight time would equal Tm, and any excess

between that tf and the specified transfer time would become an initial

coast.

In general, an initial coast also allowed the given condition to

yield a local optimum primer time history. If there was no coast and

Tf > Tm, an initial coast was indicated by the primer time history, and

the no coast trajectory went inside the planet radius. In all cases,

the initial coast trajectory was a local optimum, stayed outside the

planet's surface, and met the cost functional requirement dJ/dt =0

Hamiltonian = 0.

4.4. Cost Comparisons

For the non-rotating case investigated in this chapter, the global

optimum was analytically determined and verified using primer vector

theory. The absolute minimum AV occurs with an initial coast such that

the trajectory is rectilinear with a zero velocity at intercept. Thus

the spacecraft is launched on a rectilinear orbit and just "grazes" the

target at intercept. The sum of any coast time and this flight time on

the rectilinear orbit is the reference time previously discussed.

Figure 4-3 shows the geometry for I = 2700. At t the spacecraft is on

the launch pad and the target is in a coplanar orbit at 2700. At t , thec
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Figure 4-2. Sample Data Case.
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initial coast is complete and the spacecraft fires its impulse. At tf,

the intercept occurs "overhead" of the launch point.

Note that for 5 = 00, the target must travel through one period

to achieve the optimum intercept. For 5 = 90, it must travel 3/4 of a

period; a = 1800 requires 1/2 of a period; and S = 2700 requires 1/4 of

a period target flight time. This reference time equals [(360°-S)/360*] x

Target orbit period, e.g. tf = 1.8122 TU for S = 2700 and R = 1.1.

4Figure 4-2 shows the costs for posigrade and retrograde orbits,

both with and without an initial coast. The optimum AV curve is the

bottom one, consisting of local optimum points which do not go through

the planet surface. Theoretically, for a given tf, any point with a AV

greater than the minimum is possible. By plotting all local minima for

a range of flight times, the global minimum was found. It agreed with

the previously obtained theoretical value. Thus for a = 270, R = 1.1,

the global minimum occurs at tf = 1.8122 TU, with a flight time of .4844

TU, a coast time of 1.3278 TU, and a AV of .4264 DU/TU.

Figure 4-4 shows the minimum fuel optimum curves for R = 1.1,

i.e. the bottom curves on plots similar to Figure 4-2. The various beta

curves are plotted separately, but all global minimum AV = .4264 DU/TU

at the reference time previously discussed. Figures 4-5, 4-6, and 4-7

show similar results for final target radii of R = 2, 4.1721, and 6.6228,

respectively. The data points are labeled P for posigrade and R for

retrograde orbits. The superscript + indicates an initial coast was

optimal. Thus a P would indicate that the local optimum for that point

was a posigrade orbit with an initial coast. A point marked with a C

indicates the planet surface constraint could not be met with a single-

[ , 0 A ., a
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impulse trajectory. To avoid clutter, only the point for the lowest

transfer time is marked. The next point marked on the curve, viewing as

transfer time increases, is where the optimum condition changes, e.g.

from R to P . Thus a region on a curve with no markings has the same

type optimal trajectory as indicated by the last marked point to the

left (lower transfer time).

Several general trends are noticeable. Retrograde, with or

without a coast (depending on T m) is optimum for times less than the

minimum AV time, and posigrade with an initial coast is optimum for

times greater than this. Only in very short flight time cases will

this not be true, e.g. the time is so short that for a given geometry

the launch vehicle goes through the planet on a posigrade orbit. For a

given target radius, the global AV is the same regardless of beta.

Also, as the target radius increases, the curves flatten, i.e. there is

less variance in AV from the global minimum. Looking at Figure 4-7 for

R = 6.6228, the absolute minimum AV is 1.3031 DU/TU. For 20 < t f< 150,

the local minimum AV never exceeds 1.3290, only a 2% variation.

Apparently, the greater the target R, the less variation there is in

AV.

For the and transfer times considered, only one impulse

optimal solutions were found. All cases of added impulses or planet

constraint violation did not have a short enough transfer time to yield

multiple intercepts (see Appendix D).

Figure 4-8 shows a sample coplanar trajectory. Note that both

posigrade and retrograde orbits with no coast greatly exceed the target

radius of 4.1721 (5.84 and 6.23 radii respectively) and that both
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posigrade trajectories go inside the planet's surface. The optimal

trajectory for this case was the retrograde with an initial coast.

Figure 4-9 shows sample primer time histories for the posigrade

and retrograde cases with no coast associated with Figure 4-8.
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CHAPTER 5

OPTIMAL, NONCOPLANAR, NON-ROTATING TIME-FIXED INTERCEPTS

5.1. Introduction

Gobetz and Doll (16) show how most research has concentrated on

time-open problems. Fixed time interception between noncoplanar body

and circular target orbit has received little attention due to the

increased difficulty involved with out-of-plane motion. This chapter

analyzes this area in an attempt to expand current knowledge on the

effect of inclination on orbits. Results will be compared to those in

Chapter 4.

5.2. Posigrade versus Retrograde

Results generally agreed with those previously found for the

coplanar case. The reference time is identical to that in the previous

chapter, although the trajectory is no longer rectilinear. Thus for

transfer times less than the reference time, retrograde with or without

initial coast is generally the local optimum. For times greater than the

reference time, posigrade with an initial coast is optimal. This trend

followed for all R and beta. For extremely short transfer times, with

= 00 or 900, a posigrade orbit with no initial coast was optimum, as

was the case for the non-inclined orbits.

5.3. Coast versus No Coast

Similar to the coplanar case, a coast often improved the cost.

Again, the actual time of flight equalled the T with the difference
m
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between the designated transfer time and the time of flight yielding the

coast time. As previously discovered, the case with an initial coast

stayed outside the planet's surface, was the local optimum, and yielded

dJ/dt = H = 0.
0

5.4. Cost Comparison

For the non-rotating, inclined target orbit cases investigated

in this chapter, the results directly paralleled those of the coplanar

cases in Chapter 4. The reference time was identical, as were the times

to achieve the global minimum. However, since the target orbit is no

longer coplanar with the launch point, the trajectory for this global

optimum is no longer rectilinear, but rather a high eccentricity ellipse

in the XZ plane. The larger the target radius, the higher the eccen-

tricity.

Figures 5-1, 5-2, 5-3, and 5-4 show the minimum fuel results for

R = 1.1, 2.0, 4.1721, and 6.6228 respectively. As with the coplanar

results, the global minimum AV is identical for a given R, regardless of

beta. Posigrade and retrograde orbits follow the same trends previously

noted. The curves flatten as R increases, reducing the variation in AV

from the gl'bal minimum. Comparing the figures to the comparable ones

in Chapter 4, one notes that the global minimum AV is higher for inclined

orbits, e.g. for R = 1.1, AV = .6868 DU/TU versus .4844 for coplanar.

This trend follows for the other target radii investigated. For R = 2,

inclined versus coplanar yields 1.0248 to 1.00; R = 4.1721 yields 1.2366

versus 1.2331; and R = 6.6228 yields 1.3043 versus 1.3031.
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The primer time histories are very similar to those in Chapter

4. No added impulse was optimum. Only extremely short transfer times

(e.g. 1 TU for R = 1.1) caused the optimal trajectory to go through the

planet surface and require multiple impulses (see Appendix D).

Figure 5-5 shows a sample trajectory for the same R, beta, and

tf as in Chapter 4. Now the problem is three dimensional, but generally

similar in appearance. Again, the trajectories for posigrade and

retrograde without a coast exceed the target orbit radius (5.82 and 6.22

respectively). Both posigrade orbits go inside the planet's surface.

The optimum trajectory is retrograde with an initial coast.
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CHAPTER 6

OPTIMAL, COPLANAR, ROTATING, TIME-FIXED INTERCEPTS

6.1. Introduction

The conditions used to obtain the data in this chapter are

identical to those in Chapter 4 with one exception. The body from which

the interceptor is launched is now rotating. The rotation rate used

approximates that of the Earth. Intercept geometry is unchanged if

there is no wait time prior to a launch, and can be seen in Figure 4-1.

If primer theory dictates that an initial coast is optimum, the launch

point also moves as the Earth rotates. However, the Earth rotation

rate is different from that of the target for final target radii (R)

of 1.1, 2.0, and 4.1721 (12 hour period target orbit). For the 6.6228

(geosynchronous, or 24 hour period target orbit) target radius, the

planet and target rotate at the same rate.

The same parameters were varied for this chapter as in previous

chapters. It is assumed that the planet rotation is in the same

direction as the target motion. The planet rotational angular velocity

is assumed to be along the Z axis.

As previously noted in Chapters 2 and 3, results are only a first

approximation, neglecting atmospheric effects. Thus the results of this

and the succeeding chapter are included to yield approximate optimal

Earth intercepts. As previously found in Chapters 4 and 5, all optimal

intercepts could be accomplished with a single impulse.
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6.2. Posigrade versus Retrograde

Figure 6-1 shows a typical data case for R = 1.1, beta = 00 with

the transfer trajectory in the same plane as the target. Similar to

non-rotating results, retrograde trajectories with or without an initial

coast were optimum for transfer times less than a reference time, and a

posigrade trajectory with a coast was optimum for transfer times greater

than this reference time. However, this can be generally seen only for

R = 1.1 and 2.0.

Note that due to Earth rotation in the same direction as a

posigrade transfer, posigrade orbits had lower AV than comparable

retrograde results. Thus posigrade with no coast has a lower AV than

retrograde with no coast. However, this ignores the planet surface

constraint. Enforcing this constraint yields the results in Figures

6-2 through 6-5.

6.3. Coast versus No Coast

As for the non-rotating body cases, data analysis shows that an

initial coast generally will lower the cost. One exception is for very

short transfer times, where posigrade or retrograde without coast are

usually optimum. The other exception is for R = 6.6228, beta = 1800

and 2700, where posigrade and retrograde without coast were optimal over

a wide range of transfer times. Noting that all R = 6.6228 curves are

flat for transfer times past a given time (the time of flight to com-

plete the intercept for the fixed geometry between the points), it

would seem that the beta = 1800 and 2700 curves also show that no

initial coast is required prior to this time.

In all cases, the trajectory after an initial coast yielded a

local optimum primer time history, if the planet surface constraint was
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not violated. The required cost functional, equation 3-38, dJ/dto = 0,

was also met.

6.4. Cost Comparisons

The global optimum was obtained using primer vector theory.

Similar to the non-rotating case, the absolute minimum AV occurs with an

initial coast such that the trajectory is a high eccentricity ellipse

(e.g. .997 for R =1.1 and .988 for R = 2.0) with a zero intercept

velocity as shown in Figure 4-3. However, since the Earth is now

- rotating, the optimal trajectory is no longer along the X axis, but at

some point past this in the XY plane. Figures 6-2 and 6-3 for R = 1.1

and 2.0 show similar results to the non-rotating case. The time giving

the absolute minimum AV for each beta depends on the synodic period

between a point on the Earth's surface and the target body. The general

trends noted for the non-rotating body in Section 4.4 are the same for

these radii.

However, Figure 6-5 for R = 6.6228 does not show

the same type curves. These curves asymptotically approach a limit as

transfer tim~e increases. Perhaps this is most easily demonstrated for

R = 6.6228, beta = 00. The target is always "overhead" the launch point.

The interceptor must be launched downstream, or posigrade, to intercept

* the target with minimum AV. The same geometry between target and launch

point, and hence the same transfer trajectory, exists for all transfer

times greater than that required to accomplish the intercept. For

transfer times smaller than this, a higher AV must be expended.

Thus, one notes that for R = 6.6228, beta = 0* and 90, and for

R =4.1721, beta =00, posigrade, with or without an initial coast, is
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always optimum, with a constant AV for sufficiently long transfer times.

The other curves show a mixture of posigrade and retrograde type orbits.

For R = 6.6228, each beta curve has its own minimum AV which is

dependent on the initial geometry to obtain the minimum AV.

As with the non-rotating data, the minimal AV does increase as R

increases. However, the small variation in AV as R increased in the

non-rotating cases, generally does not apply in the rotating cases.

Only in the case of the flat curves (R = 4.1721, beta = 0*, and R =

I 6.6228, beta = 0* and 90*) does the AV not vary.

Figure 6-1 shows the costs for posigrade and retrograde orbits,

with and without an initial coast, for R = 1.1 and beta = 0%. Unlike

the non-rotating cases, the optimal AV curve is not the bottom one. It

is the local optimum condition closest to the bottom which does not

violate the planet surface constraint. Figure 6-2 shows R = 1.1 optimal

curves for the four betas tested. Note the minimum AV is the same for

each beta, AV = .4256 DU/TU. This value is less than the .4264 DU/TU

for the non-rotating case.

Figure 6-6 shows a sample coplanar, rotating Earth trajectory

for R = 4.1721. Both posigrade and retrograde orbits with no coast do

not violate the planet surface constraint, but do greatly exceed the

target radius (R = 5.63 and 5.80 respectively). The retrograde orbit

with a coast goes through the planet. The optimal trajectory for this

case is the posigrade with an initial coast. Note that the launch

points for the coasting trajectories have rotated with the Earth's

surface. Since the wait times for posigrade and retrograde orbits vary

slightly, the launch points are also slightly different.
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CHAPTER 7

OPTIMAL, NONCOPLANAR, ROTATING TIME-FIXED INTERCEPTS

7.1. Introduction

This chapter analyzes conditions identical to Chapter 6 with one

exception. The launch point is now a different latitude than zero, so

the intercept trajectory is not in the same plane as the target orbit.

Results and conditions can be compared to Chapter 5 for a non-rotating

body. The conditions applied in this chapter present the most general

case analyzed in this research.

7.2. Posigrade versus Retrograde

Results generally agree with those found in Chapter 6 for a

coplanar, rotating Earth. The reference time for each beta still

depends on the synodic period, although the trajectory is not recti-

linear (e.g. e = .78 for R = 1.1 and e = .88 for R = 2.0). For R = 1.1

and 2.0, retrograde, with or without an initial coast, is optimum short

of the reference time, while posigrade with coast is optimum for trans-

fer times greater than the reference time. These results can be seen

in Figures 7-1 and 7-2. For short transfer times, the beta = 00 or 90,

a posigrade orbit with no initial coast is optimum.

Figures 7-3 and 7-4 show results for R = 4. 1721 and 6.6228. The

comparisons are not as predictable as with the lower radii results.

Curves incorporate a mix of posigrade and retrograde orbits ranging from

a flat, all posigrade curve (R = 6.6228, beta = 0*) to one resembling the

results for the lower radii (R = 4.1721, beta = 1800).

. . . .. J. r -
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7.3. Coast versus No Coast

As previously found, an initial coast often improved the cost.

Short transfer times lead to posigrade or retrograde orbits without

coasts for the optimal solution. However, numerous curves have large

sets of optimal solutions without an initial coast. These were for R

1.1, beta = 9Q0% where there is a large set of optimal, retrograde

orbits with no coast; and R = 6.6228, beta = 9Q0% 1800, and 2700, where

there are large sets of optimal posigrade and retrograde orbits with no

coast. In all optimal cases involving an initial coast, and outside the

planet radius, the cost gradient, dJ/dt 0, was zero.

* 7.4. Cost Comparison

The rotating, inclined target orbit cases of this chapter gen-

erally agree with the coplanar cases in Chapter 6. The reference time

for the global minimum is identical, but the transfer trajectory is a

high eccentricity ellipse in the XZ plane, but rotated due to Earth

rotation. For R = 1.1 and 2.0, the results are also similar to the

non-rotating case. R = 4.1721 and 6.6228 do not show exactly the same

trends. Geometry is more critical and the minimum AV does not always

occur at the reference time. For R = 6.6228, the curves approach an

asymptotic limit as transfer time increases.

As seen in Chapter 6, the minimum AV does increase as R increases,

and the curves do not flatten as R increases. The global AV is higher

than those for the coplanar case and optimum posigrade AVs are lower

than comparable retrograde orbits.

* Figure 7-5 shows a sample trajectory for the same R, beta, and

t f as in Chapter 6. The curves are similar to Figure 6-6, but three
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68

dimensional. Posigrade and retrograde without an initial coast exceed

the target radius (R = 5.61 and 5.86 respectively). The retrograde with

an initial coast goes through the planet and violates the planet surface

constraint. The optimum trajectory is the posigrade with a coast. As

noted in Section 6.4, the launch points rotate as the Earth does, with

a slightly different launch position for posigrade and retrograde with a

coast.

. .A.,PM W:.-. e -P P -l
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

8.1. Costs

The main conclusion of this research is that optimal, direct

ascent, time-fixed, orbital interceptions can usually be accomplished

using one impulse. This result depends on certain conditions and assump-

tions. The major conditions are that the intercept trajectory must

remain outside the planet surface and that the transfer time must

not be too small (see Appendix D).

The major assumptions qualifying the above conclusion are that

there is only one central gravity field, and that single intercepts are

made. Changing any of these assumptions or conditions could lead to

multiple impulse trajectories.

one of the major factors to be considered which led to exceptions

to this result was the planet surface constraint. Lower costs could

often be achieved if the interceptor flew through the planet.

p Obviously, this condition is not permissible. Any time the surface

constraint was violated, a minimum of two velocity changes would be

.9 necessary. The first would maintain the orbit at or above the planet

surface (AV = 1.0 DU/TU), while an additional impulse would be required

to achieve the desired intercept. If the transfer time was greater

than that obtained in Appendix D, i.e. greater than the minimum time

required for one impulse, only one impulse would be required for an

optimal trajectory. If the transfer time is less than this value, the
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planet constraint would be violated, and multiple impulses would result.

A theoretical approach incorporating the planet surface constraint is

developed and presented in Appendix A.

Several factors contributed to the result that optimal inter-

cepts could usually be performed with a single impulse. The flight

direction could be varied between posigrade and retrograde trajectories,

allowing flexibility unavailable with rendezvous problems. A retrograde

trajectory for a rendezvous problem would produce unacceptably high AVs.

Another contribution is that the launch point/target geometry changed

such that an initial coast, combined with the flexibility to choose

posigrade or retrograde orbits, was apparently more favorable than an

added impulse. This occurred for all nonrotating cases, and for all

rotating cases except near or at the geosynchronous orbit (R = 6.6228).

There the body and target rotated at the same rate and the geometry was

fixed. A contributing factor to the geometry change was that the body

rotation rate involved was either 0, for a non-rotating body, or .0588

rad/TU for a body approximating an Earth rotation. These small rates

allow relatively rapid geometry changes except for the cases previously

noted.

Thus, the major contributing factors which usually allowed a

single impulse to yield optimal intercept trajectories were as follows:

1. The flexibility to choose the optimal flight direction

2. The changing launch point/target relative geometry due to the

low rotation rates used for the central body

3. The limiting assumptions used

4. The planet surface constraint could be satisfied for all

intercepts unless the transfer time was too small (Appendix D).

% . " , , ., - ..... .,.. °. ..... . '..%. '.. i.. ...i. .i... . - .'-.''..%
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This study found that to minimize the cost, an initial coast was

often required, both for a rotating and non-rotating body. The AV cost

can also be lowered by launching from a point in the same plane as the

target orbit, i.e. coplanar. As the latitude between launch plane and

target plane increases, the cost increases. Cost also increases with

increasing target orbit radius, R.

For both rotating and non-rotating cases, the global minimum AV

occurs at a given reference time. For a launch from a rotating body,

the reference time is related to the synodic period between the rotating

body and the target. For a non-rotating body, the reference time is

that for interception of the target at the same longitude as the launch

4 point. If a coplanar condition exists, the transfer trajectory for the

global minimum AV is rectilinear with zero velocity at intercept. The

sum of any coast time and the flight time for this rectilinear trajectory

4 is the reference time. The intercept trajectory is in the XY plane, and

along the X axis for the non-rotating body. For the non-coplanar case,

the intercept is a high eccentricity ellipse in the XZ plane for a non-

rotating body, and in a rotated XZ plane for a rotated body.

* The use of primer vector theory, as developed by Lawden and

others, was extremely helpful in obtaining the results in this research.

In all those cases for which the planet surface constraint was satisfied,

the primer vector provided the information that a neighboring trajectory

* containing an additional impulse would not decrease the cost. The primer

vector also provided an expression for the gradient of the cost with

respect to the initial time. This was useful in determining whether an

initial coast was optimal and in determining the optimal value of the

initial coast.

ff~~~~~~~~~~~ %A*4 d*JipJ~id~4. .~~~..
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8.2. Geometry

The relationship between the launen point on the Earth's surface

and the target position was also analyzed. For non-rotating bodies, and

rotating bodies with target radii of 1.1 and 2.0, the results were

* similar. Basically, the same W% could be obtained regardless of the

initial position (beta) of the target. Of course, this AV could be

reached with a shorter transfer time as beta increased. Thus the trans-

fer time for a globally optimum AV for beta = 2700 was less than that

for beta = 0*, 90% or 1800. This relationship held for coplanar and

non-coplanar trajectories.

However, the geometry relationship did not yield as universal

a result for R = 4.1721 and 6.6228 for the rotating Earth case. Here,

results for all betas seemed to asymptotically approach a minimum AV as

transfer time increased. For R = 4.1721, all betas seem to converge to

the same global minimum AV. For R = 6.6228, each beta seemed to have

its own minimum AV differing from the other betas. Thus, for a given

transfer time, each beta can give a different AV, with widely varying

results. Especially noteworthy is the geometry involved in the geo-

synchronous orbit (R = 6.6228). The AV value is basically constant

since the geometric relationship between launch point and target is

invariant. Only for very short transfer times was a higher AV necessary

to effect the intercept.

The direction of the intercept flight, posigrade or retrograde,

* was also critical. In general, for transfer times less than the reference

time discussed in Section 8.1, retrograde with or without an initial

coast was locally optimum. For transfer times greater than this
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reference time the geometry changed such that posigrade with an initial

coast yielded the optimum trajectory. For very short transfer times,

posigrade with no coast was usually optimum. For the rotating Earth

cases with R = 4.1721 and 6.6228, results were not so easily generalized.

Large areas of transfer times involved posigrade or retrograde orbits

with no coast at all.

8.3. Recommendations for Future Study

Several areas for further investigation would prove useful and

informative. First, analysis of the rotating body for a non-Earth

rotation rate could yield interesting results. The Earth rotation rate

is approximately .0588 radians/TU, or a rotation period of about 17 times

that of a circular orbit at the Earth's surface. Higher rotation rates

should be investigated.

Second, incorporate a better model of the central body from which

launch is made. Starting with the Earth, the most likely first addition

would be an atmospheric model. This would introduce large effects as

the launch vehicle must travel from the Earth's surface through the

atmosphere to reach orbit. Drag, wind shear, and pressure and tempera-

ture gradients should all be incorporated in this model of the atmosphere.

The Earth's oblateness would also be an interesting addition to the

realistic model.

Third, the case of a rotating planet for which the target is not

in the equatorial plane should be investigated. However, the results

obtained for the nonrotating case are completely general.

IV~~ Lif



74

Fourth, intercept between launch on a body's surface and more

general target orbits, i.e. ellipses rather than circles, should be

investigated. This is exceedingly more complex than surface to circular

orbit transfers, but would be more general and useful in some cases.

Fifth, the inclusion of multiple intercepts should be evaluated.

After making an intercept as demonstrated in this research, other inter-

cept points could be attained in a given order. This would probably

yield multiple impulse trajectories with interesting results.

Sixth, this research could be expanded to multiple gravitational

fields. An example would be a launch from Earth intercepting a target in

orbit around the moon.

Finally, investigation of algorithms to find multiple solutions

to a given function would be useful. Non-unique optimal solutions are

present for many data sets analyzed in this research. Determination of

the absolute minimal optimal solution was done semi-manually by operator

manipulation of input data to the computer. A better algorithm to

automatically find a global minimum of a function, regardless of how

many other local optimums there are, and regardless of the function or

starting point for iteration, would be extremely useful.

-M
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APPENDIX A

PLANET SURFACE CONSTRAINT

This appendix is included as a reference and for general back-

ground information. It was not directly used in the numerical

algorithms to obtain data. However, its formulation lends insight to

the problem of launching from a constraint surface rather than from one

orbit to another.

A consideration in launches from a planet's surface is that the

interceptor vehicle may not penetrate the surface. In order to determine

the effect this has on the trajectory and the primer vector, use the

notation of Bryson and Ho (8) to develop the following. Normalize the

planet surface to one distance unit (DU), i.e. R 0= 1 DU. The new

constraint can be represented as

r T r >R 2  A-1

Rewrite this as

S (X,t) =1/2 (R 02 _r T r) < 0 A-2

Differentiate until a control variable appears, i.e. r', the thrust

acceleration magnitude, or U, the thrust vector in the equations of

state

X =f (X, U, t) =rg(r) + rUA- 3

L J
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Thus

S =-r TVA-4

and

VS =-VT V - -TV2 r T [g(r) + fU A-5

Now the constraint can be written as

S < 0 A-6

Expanding A-5 for an inverse square gravitational field and using the

vis-viva equation

V = p (2/r - 1/a) A-7

yields

S -V + P/r - F, rT U < 0 A-8

One notes that A-8 is zero if both

2 =
V

and A-9

r~u= T
r TU 0

Thus, r = a, a circular orbit of radius R (from vis-viva), and r is

perpendicular to U. Augment the Hamiltonian function with this addi-

tional constraint, using a new adjoint variable, Ac. Thus from (2-10)

H X r V + ( + F U) - Xjr + Xc S A-10

%" . . . .
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For an active constraint

X > 0 if "= 0 A-lI
C

For an inactive constraint

S= 0 if S" < 0 A-12c

Substitute A-5 into A-10 to obtain

H= (A -X VT) V + (T r( + U)- A-13

-r c +- - - r ))

Define new Lagrange Multipliers as

A = - X Vi-r -r c-

and A-14

_= A -A r
-v c -

Now write A-13 in simplified form as

H = A T --v (g + F U) - Xjr A-15-r - -v

This is the same form as the Hamiltonian in Chapter 2 (2-10) except the

Lagrange multiplier functions now include the surface constraint adjoint

variable for the constraint A-6.

As was done in Chapter 2, to minimize H, align - A with U, i.e.,

reintroduce the primer vector. From Chapter 2

A = -P 2-15-'v -

A =P 2-17--r
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However, now introduce a surface constrained primer vector, H, by

defining

A = -N A-16-V -

and

r = H A-17-r-

Introducing this nomenclature into A-14 yields

f=P -XcV

and A-18

f"= P+X c r

From Figure A-1, one can see that the surface constraint is violated in

the nonrotating case if

p T r < 0 A-19

To satisfy the constraint requires that

H oT r 0 A-20

or using A-18,

~T T
P r + r r =0 A-21-o-O O c -O -O

on the boundary. Solving for X c yields

XT=--(Po ro)/r 2 A-22
c _0 0 0

This term is positive if the surface constraint is not met. Equation

A-18 can now be solved for the new, constrained primer vector given ro,

v , and
-o c'
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LV constrained geometry
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Figure A-i. Planet Surface Constraint Geometry.
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P = AV / I(V (.-o -0o

Thus one solves the Lambert problem and obtains an initial

primer and primer rate. If constraint A-19 is true, the primer must be

modified by the component X r to obtain the new primer, RT. This primer

will circularize the trajectory on the planet surface (Ir! = R and

JA V I = 1 DU/TU). At some appropriate time, a second A V would be-0O

applied to allow interception of the required position. The theory

developed in Chapters 2 and 3 would still apply with the substitution

of H for P.

,.-
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APPENDIX B

LAMBERT'S PROBLEM SOLUTION

B.1. Introduction

As with rendezvous problems, the known quantities in an inter-

cept problem are initial position, final position, and the transfer

time between the two. Lambert demonstrated that the flight time depends

only on the semimajor axis of the transfer conic, the sum of the magni-

j tudes of the terminal radii, and the chord joining these radii. Using

Lambert's theorem, Battin (4) developed a convenient algorithm used in

this research. This algorithm determines the trajectory and the terminal

velocity vectors in terms of universal variables applicable to all types

of conic orbits. The algorithm as programmed by D'Souza (13) was used

in this study. Once these velocity vectors are known, the orbital ele-

ments of the transfer conic can be calculated using techniques presented

* in numerous references (2, 10, 18, 27).

B.2. Minimum Energy

Figure B-1 shows the geometry involved in solving Lambert's

problem. Given r1and 12,and a transfer time, there exists an orbit,

having a certain value of semi-major axis, that connects P 1and P 2 in

the specified time. Writing the basic property for an ellipse, one

gets

P IF* + P 1F = P 2F* + P 2F =2a B-1
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F*, the vacant focus, is the intersection of two circles with radii

P F* = 2a - r

and B-2

P2
F * = 2a- r 2

By varying a, the locus of vacant focus is achieved.

There is a minimum value of a, called am, for which the two

circles described above just touch. In this case, F* in on the chord,

c. If a is too small, the circles do not touch and a transfer from PI

to P2 is impossible, i.e. the energy available is too low for an elliptic

orbit to reach both P and P Thus a corresponds to the lowest possible

energy path reaching both P1 and P2. Am is obtained by noting that

(2am - r2) + (
2am - r 1 c

or B-3

am = (r1 + r2 + c)/4

Define the semi-perimeter, s, as

s = (r1 + r2 + c)/2 B-4

Thus

a = s/2 B-5m

From the vis-viva equation

2Vim = P(2/r I - l/am) B-6

where Vim is the smallest possible speed at P that will get the vehicle
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to P2 This is the condition that is critical in finding optimal inter-

cepts for the non-rotating body cases described in Chapters 4 and 5.

B.3. Lambert Solution

Previous work has described this solution in much detail (2, 4,

10, 18, 27). This study modified the Battin algorithm (4) to calculate

the terminal velocities for rectilinear orbits. The universality of the

algorithm was useful, although it was found that hyperbolic orbits were

optimal (and expensive) only for extremely short transfer times.

In terms of classical Lambert variables for an elliptical orbit,

the time of flight for a given set of conditions (rl, r2, tf, a) is

tf = a/ [sgn(t m-tf)(a-sino- )-sgn(sin8)( -sin )] B-7

where 0 is the transfer angle,

sirne/2 =.' s2a

and B-8

sin/2 7- (s-c)/2a

For a minimum energy ellipse

sin C'm/2 = 1 =>Am = fl

and B-9

sinsm/2 = / (s-c)/s

Thus

tm = /s3/8W [Tr-sgn(sinO)( m-sinmm )] B-10
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The required velocities, V1 and V and the orbital elements can also be

calculated using the aforementioned references.

'p1

.3

-- 4

5'
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APPENDIX C

OPTIMAL, ZERO GRAVITY, TIME-FIXED INTERCEPTION

C.l. In trod uc tion

This problem is an interesting theoretical aside, related to thie

thesis topic. Gravity is assumed to equal zero. These results were not

A directly used in this research, but lend to an understanding of the basic

problem.

C.2. Necessary Conditions for an Optimum Trajectory

From Chapter 2, the following equation of motion was introduced.

Vrr +=F C-1

For a no thrust, optimal coasting arc, F 0. Assume that =0. Then

the solution to C-1 becomes

r = a t + b C-2

Thus the radius vector in a zero gravity field, varies linearly with

time, and the velocity vector is a constant, a. Similarly. the

Hamiltonian, equation 2-10, can be written as

H- T V = constant c-3

From the Euler-Lagrange conditions (8 and equations 2-11, 2-12, and

2-13), one obtains
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; 0

-A - -
= 0-4'- -r

X. = 0

Thus,

X = constant = c-r

A -c t + d C-5

Xj =1i
xJ

From Lawden (30), the primer vector is defined as

P (t) =-X (t) C-6

Using the results in C-5

P (t) = c t - d C-7

Thus

= c = constant = X C-8-r

C.3. Boundary Conditions

To solve for the constants in equations C-2 and C-7, one general

assumption is made. The target (point to be intercepted) is the origin

of the coordinate system used, as shown in Figure C-l.

At t = t = 0, r = r , and V = V on the initial orbit. Simi-0 -'- -0

larly at t = tf, r = 0 since the intercept must occur at the origin, and

V Vf which is arbitrary. Thus the intercept vehicle moves from one

linear trajectory to another by application of a velocity change. Using

these boundary conditions in equation C-2, one finds

.% .'- 9.
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b- ro

and a V C-9--O

Thus

r Vot + r C-10-o --o

on any trajectory in a zero gravity field.

At any point, r, on a general zero gravity trajectory, a AV is

applied to go to the origin such that

V+ -V + AV C-il

to go to the target, or

r I = (V+) t + r C-12

or r I = (V + AV)t + r C-13

on a zero g trajectory intercepting the origin, where r I is the radius

on the path to the target, starting at r with constant velocity, V+ .

Knowing that at t f 0, r I = r, a point on the general zero g trajectory,

and also that at t tf r I - 0, yields the solution at the final time,

tf,

r I - 0 = (V 0+AV)tf +r C-14

Solving for the required AV yields

AV- -L :tf - V C-15

-o Z
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This is the AV required to go from any point r, with velocity V0, on a

general zero g trajectory, to the target (origin) in time tf. Substi-

tuting C-15 into C-13 yields

r = r (1 - t/tf) C-16

C.4. Primer Vector Calculation

Use the definition of the primer vector

P -x = v/WjVI C-17

where 1AVI AV = (AVTAV)I/2 , and the known boundary conditions, to

determine the constants in C-7. For an intercept trajectory P (tf) = 0.

Thus C-7 is rewritten as

P t) = c (t-tf) d (t/tf - 1) C-18

Note that t - tf < 0.

From C-17 and C-18 one can see that P is in the direction of AV

and - c, while P is in the direction of -AV and c. P and P are in

opposite directions.

To solve for the primer vector, use the initial condition t = t
0

- 0 to obtain

c = -P (0)/tf = -AV/tfAV C-19

Substitute C-15, evaluated at t = tot into C-19 to obtain

= /t fV (r /t f + Vo) C-20
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Now that c is in terms of known quantities, a general primer vector

equation can be obtained by substituting C-20 into C-18.

P=r (t - t 2)t AV + V.(t - tf)tfAV C-21

-o f)/f - tf fL

This linear relation holds at both boundary conditions. At t = tf, P =

0, and at t = 0, P = AV/AV. The primer time history in a zero gravity

field is shown in Figure C-2. From Lawden (30), the primer history

shown is already optimum. No initial coast or intermediate impulse can

improve AV.

C.5. Examples

Two pertinent cases arise as interesting applications of the

theory just developed.

Case I

TAv- = 0, C-22

i.e. where AV is perpendicular to r . Substitute C-15 into C-22 to

obtain

-r -/t f r TV =0 C-237 o f -o-0

Solving for tf at this minimum AV condition yields

2 T
T* = tfmin = -ro /r V C-24

Use C-24 and evaluate C-15 at t to obtain the minimum AV.

AV min = r T V r/r 2 -V C-25

Look at the Hamiltonian on the trajectory to the origin for this condition.
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H = jT V = CT V+ C-26

Substituting, one can obtain

-/t f2 AV [r/tf +r Vo C-27

Thus for r T V < 0, one finds that H < 0 for t < T*, and H > 0 for t >--o --o

T*. At T*, H = 0 (the time-open optimum). This is graphically shown in

Figure C-3.

If, for the time-fixed case, the transfer time, tf is greater

than T*, the AV min still occurs at T*. If, however, the tf is less

than T*, the AV min will occur at the given tf.

Case II
T

Assume r V > 0. Since AV is never perpendicular to ro, the-- O -- O

time-open minimum AV is at t - -. At this point equation C-15 shows

that AV min = -V 0. Given a specified final time (time-fixed), tf, which

cannot be exceeded, the minimum AV occurs with a time of flight equal to

the specified time, i.e. no coast. Using the analysis developed in

Case 1, one obtains the time-fixed minimum conditions.

Tmin = t f

and AVm in = -r/tf - V C-28

The Hamiltonian is identical to C-27. However, if r T V > 0, H < 0 for--o --o

all t. H - 0 (the time-open optimum) only as tf 4 0. Figure C-4

graphically shows this.
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APPENDIX D

MINIMUM TIME FOR SINGLE IMPULSE TRAJECTORIES

D.l. Introduction

Results of this study show a single impulse to be optimal under

certain conditions, one of which was that the transfer time not be too

small for a given initial target position. In order to determine what

this minimum time for a single impulse trajectory is, the planet con-

straint must be considered. Any time the planet constraint is violated,

two (or more) impulses are required: One will maintain the orbit at or

above the planet surface, and a second will accomplish the intercept.

The condition for the launch vehicle trajectory to be tangent to the

planet surface at launch is

r TV = 0 D-1

If r 0T V < 0, the planet constraint is violated and more impulses would

be necessary. Thus equation D-1 represents the limiting case between one

and two impulse trajectories. It indicates that the launch point is at

the periapse of the transfer conic, i.e., V 10= V .

Note that the value of V 0in D-1 is not unique. Consider the

cases shown in Figure D-1. On trajectory NH, a Hohmann transfer is

considered (with only one impulse for an intercept). The velocity (-V)

and semi-major axis (a H) are known, yielding a minimum transfer time,

t H = Hohmann period/2, and the final target position is at a transfer

angle (true anomaly) of 9H =180* from launch. For the same final
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target position and transfer time, a velocity less than the Hohmann

velocity will penetrate the planet surface but will have insufficient

energy to reach the target orbit, i.e. a < aH. A velocity and semi-

major axis value greater than Hohmann will remain outside the planet

surface. Also, for the given final position, a time less than tH will

violate the planet surface constraint.

For a different final position, trajectory r2 will have a

minimum transfer time, tm, satisfying D-1, and an associated a and V2

For this final target position and a time less than tm, the trajectory

will go through the planet surface, while a time greater than t will
m

remain outside the planet.

Thus, for a given target orbit, the limiting time for a single

impulse, i.e. equation D-l, can be determined. If a nonrotating body

is considered, V = AV, while a rotating body would yield V = AV--p -p -

+ V
-rot

D.2. Analysis

To determine the limiting case, calculate the Hohmann transfer

conditions. Assume that r = 1, R = target orbit radius, 11 = 1, ando

that the impulse is applied at periapse. Thus the semi-major axis is

aH = (R + 1) / 2 D-2

Using the Vis-Viva equation, the velocity at periapse can be found.

V p= (2 - 1/aH) D-3

The eccentricity is calculated from r = a(l - e cosE ) where E = 0.0 o 0
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eH  I - I/aH D-4

The time of flight from periapse to the intercept point is

3/2 I-
AtH = PH/2 = T a H 3-5

The final true anomaly is

aH = 1800 D-6

Finally, the position of the target at t = t can be calculated

aH = eH - 3600 AtH/PR  D-7

where PR is the period of the orbit with radius R.

Any value of the semi-major axis less than a H will violate the

planet surface constraint. Choose successive values of a > a. . Since

the launch is at periapse, h = r X V = V k, or
- --o --o 0 -

h = V D-8
0

Solve the following equations for each a:

e = 1 - 1/a D-9

V = v2- 1/a =1+e D-1O

e = cos- I [l/e (Vo2/R- 1)1 D-11

E = cos -  [1/e (1 - R/a)] D-12

3/2
At = (E- e sinE) a D-13

= 6 - 3600 At/PR D-14

le I
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In the limit, a -o, yielding a parabolic transfer, and e = 1.

Calculate the quantities in equations D-10, D-11, and D-14. Use

Barker's equation for a parabola in place of D-13, i.e.

At = [tan 8/2 + 1/3 tan 3 6/2] P3/ 2  D-15

where P = 2rp = 2 for a parabola.

D.3. Results

By successively picking values of a from that for a Hohmann

transfer to that for a parabolic transfer, and performing the calcula-

tions indicated in Section D.2, a curve of transfer angle versus the

minimum time for one impulse can be obtained. Figure D-2 shows the

results for the four target radii used in this study. It is a graph of

the minimum time for one impulse versus transfer angle, or final true

anomaly, for either a posigrade or retrograde trajectory, and is

symmetric about 6 = 1800. Thus, for a given e, i.e. final target

position, the intersection of a vertical line with the curve for a

given R is the t . If t > t , i.e. "above" the curve for each R, one

impulse is possible. If t < tm , i.e. "below" the curve for each R,
m m

the planet surface constraint is violated and two impulses are required.

For example, on the R = 6.6228 curve in Figure D-2, choose a transfer

angle of 150.20. If the given transfer time is greater than t = 12.77 TU,• m

a single impulse trajectory is optimal. If t < 12.77 TU, two or more

impulses would be required.
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